If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=415
We move all terms to the left:
x^2-(415)=0
a = 1; b = 0; c = -415;
Δ = b2-4ac
Δ = 02-4·1·(-415)
Δ = 1660
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1660}=\sqrt{4*415}=\sqrt{4}*\sqrt{415}=2\sqrt{415}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{415}}{2*1}=\frac{0-2\sqrt{415}}{2} =-\frac{2\sqrt{415}}{2} =-\sqrt{415} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{415}}{2*1}=\frac{0+2\sqrt{415}}{2} =\frac{2\sqrt{415}}{2} =\sqrt{415} $
| 2(4w+7)/5=5 | | 2(4w+7/5=5 | | 2x+24+x-24=180 | | x^2*2x^2=150 | | 10x-18=2x+3 | | -1.8=2z-18=5 | | 25x+9x-12=0 | | 12×n=22 | | 15x+24=(10+3x)-2 | | 31x-5=10x+2 | | -1(2x+4)=0 | | 17-4x=15+x | | 7x-19=23 | | 12z+4=2(5z+8-12 | | 4x+9=-2-7x | | t/5-5=16 | | 4x-39=3 | | a/5+1=12 | | 16-3(x+5)=3x-4 | | (30t+20)=60 | | 8+23x=8x+38 | | 1x^2+3x+-4=0 | | -1x^2+-1x+-30=0 | | 6x+3=x+12 | | k÷5+3-3k=(-6k) | | (5÷6)-(3÷8)x=(1÷2)x-2 | | 3x^2+-15x+-72=0 | | n+4=49 | | 3y-2/9=4/9 | | K/5+3-3k=(-6k) | | 27y-2=4 | | 4x^2=10=0 |